Analysis of point mutants in the Caenorhabditis elegans vesicular acetylcholine transporter reveals domains involved in substrate translocation.
نویسندگان
چکیده
Cholinergic neurotransmission depends upon the regulated release of acetylcholine. This requires the loading of acetylcholine into synaptic vesicles by the vesicular acetylcholine transporter (VAChT). Here, we identify point mutants in Caenorhabditis elegans that map to highly conserved regions of the VAChT gene of Caenorhabditis elegans (CeVAChT) (unc-17) and exhibit behavioral phenotypes consistent with a reduction in vesicular transport activity and neurosecretion. Several of these mutants express normal amounts of VAChT protein and exhibit appropriate targeting of VAChT to synaptic vesicles. By site-directed mutagenesis, we have replaced the conserved amino acid residues found in human VAChT with the mutated residue in CeVAChT and stably expressed these cDNAs in PC-12 cells. These mutants display selective defects in initial acetylcholine transport velocity (K(m)), with values ranging from 2- to 8-fold lower than that of the wild-type. One of these mutants has lost its specific interaction with vesamicol, a selective inhibitor of VAChT, and displays vesamicol-insensitive uptake of acetylcholine. The relative order of behavioral severity of the CeVAChT point mutants is identical to the order of reduced affinity of VAChT for acetylcholine in vitro. This indicates that specific structural changes in VAChT translate into specific alterations in the intrinsic parameters of transport and in the storage and synaptic release of acetylcholine in vivo.
منابع مشابه
The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter.
Mutations in the unc-17 gene of the nematode Caenorhabditis elegans produce deficits in neuromuscular function. This gene was cloned and complementary DNAs were sequenced. On the basis of sequence similarity to mammalian vesicular transporters of biogenic amines and of localization to synaptic vesicles of cholinergic neurons in C. elegans, unc-17 likely encodes the vesicular transporter of acet...
متن کاملGenetic interactions between UNC-17/VAChT and a novel transmembrane protein in Caenorhabditis elegans.
The unc-17 gene encodes the vesicular acetylcholine transporter (VAChT) in Caenorhabditis elegans. unc-17 reduction-of-function mutants are small, slow growing, and uncoordinated. Several independent unc-17 alleles are associated with a glycine-to-arginine substitution (G347R), which introduces a positive charge in the ninth transmembrane domain (TMD) of UNC-17. To identify proteins that intera...
متن کاملGenetic Interactions Between UNC-17/VAChT and a Novel Transmembrane Protein in C. elegans
Running Title: SUP-1 interaction with UNC-17/VAChT ABSTRACT The unc-17 gene encodes the vesicular acetylcholine transporter (VAChT) in Caenorhabditis elegans. unc-17 reduction-of-function mutants are small, slow growing, and uncoordinated. Several independent unc-17 alleles are associated with a glycine-to-arginine substitution (G347R), which introduces a positive charge in the ninth transmembr...
متن کاملNeurogenetics of vesicular transporters in C. elegans.
The nematode Caenorhabditis elegans has a number of advantages for the analysis of synaptic molecules. These include a simple nervous system in which all cells are identified and synaptic connectivity is known and reproducible, a large collection of mutants and powerful methods of genetic analysis, simple methods for the generation and analysis of transgenic animals, and a number of relatively ...
متن کاملUnusual regulation of splicing of the cholinergic locus in Caenorhabditis elegans.
The essential neurotransmitter acetylcholine functions throughout the animal kingdom. In Caenorhabditis elegans, the acetylcholine biosynthetic enzyme [choline acetyltransferase (ChAT)] and vesicular transporter [vesicular acetylcholine transporter (VAChT)] are encoded by the cha-1 and unc-17 genes, respectively. These two genes compose a single complex locus in which the unc-17 gene is nested ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 45 شماره
صفحات -
تاریخ انتشار 2001